[1]:

[2]:

Hillary vs. Bernie

import cvxpy as cp

import numpy as np

import scipy

mat = scipy.io.loadmat('Hillary_vs_Bernie.mat')

X = mat['features_train']
y = mat['labels_train']
m,n = X.shape

Y = np.zeros((m,m),float)

for i in range(m):

Y[i][i] = y[il[0]

Fitting the model for v € {0.1,1,10}

The optimization problem

min ||al| + |7,
a,b

s.t. yi(aTxifb)Zlfm Vi=1,---,m
n=>0

to build a linear classifier. Corresponding to the three cases gammal = 0.1, gamma2 = 1, gamma3 =
10, the optimal solutions are labelled as (al,bl,etal), (a2,b2,eta2), (a3,b3,etald) respectively.

Here’s how we deal with the linear separator on the given data. I formed a matrix (Yipain =)Y =
diag(y1, -+ ,Ym). The rows of (Xiam =)X are the vectors x: So Xa — bl already gives the
evaluation of the linear form on these data points {x;}. We want to weigh each x;ra — b with y;:
this is achieved by taking Y (Xa — b1) which gives a vector with i*® entry being y;(z, a — b).

gammal = 0.1

al = cp.Variable(n, 'al')

bl = cp.Variable(l, 'b1")

etal = cp.Variable(m, 'etal')

objl = cp.norm(al) + gammal * (cp.norm(etal,1))

consl = [YO0(X@al-bl) + etal >= 1, etal >= 0]

probleml = cp.Problem(cp.Minimize(objl), consl)

print (probleml.solve(verbose = True, solver = cp.EC0S))
print ("\nOptimal a: ", al.value, "\nOptimal b:", bl.value)

CVXPY

[3]:

vi.4.2

(CVXPY) Mar 20 09:52:49 AM: Your problem has 181 variables, 2 constraints, and 0
parameters.

(CVXPY) Mar 20 09:52:49 AM: It is compliant with the following grammars: DCP,
DQCP

(CVXPY) Mar 20 09:52:49 AM: (If you need to solve this problem multiple times,
but with different data, consider using parameters.)

(CVXPY) Mar 20 09:52:49 AM: CVXPY will first compile your problem; then, it will
invoke a numerical solver to obtain a solution.

(CVXPY) Mar 20 09:52:49 AM: Your problem is compiled with the CPP
canonicalization backend.

(CVXPY) Mar 20 09:52:49 AM: Compiling problem (target solver=ECO0S).
(CVXPY) Mar 20 09:52:49 AM: Reduction chain: Dcp2Cone -> CvxAttr2Constr ->
ConeMatrixStuffing -> ECOS

(CVXPY) Mar 20 09:52:49 AM: Applying reduction Dcp2Cone

(CVXPY) Mar 20 09:52:49 AM: Applying reduction CvxAttr2Constr

(CVXPY) Mar 20 09:52:49 AM: Applying reduction ConeMatrixStuffing

(CVXPY) Mar 20 09:52:49 AM: Applying reduction ECOS

(CVXPY) Mar 20 09:52:49 AM: Finished problem compilation (took 1.305e-02
seconds) .

(CVXPY) Mar 20 09:52:49 AM: Problem status: optimal

(CVXPY) Mar 20 09:52:49 AM: Optimal value: 1.057e+01

(CVXPY) Mar 20 09:52:49 AM: Compilation took 1.305e-02 seconds

(CVXPY) Mar 20 09:52:49 AM: Solver (including time spent in interface) took
4.034e-03 seconds

10.57269665702442

Optimal a: [0.14105247 0.18277618 -0.73224986 -0.10977297 0.38083898]
Optimal b: [-3.14700164]

gamma2 = 1

a2 = cp.Variable(n, 'a2')

b2 = cp.Variable(l, 'b2')

eta2 = cp.Variable(m, 'eta2')

obj2 = cp.norm(a2) + gamma2 * (cp.norm(eta2,1))
cons2 = [YO(X@a2-b2) + eta2 >= 1, eta2 >= 0]

problem2 = cp.Problem(cp.Minimize(obj2), cons2)
print (problem?2.solve(verbose = True, solver = cp.EC0S))
print ("\nOptimal a: ", a2.value, "\nOptimal b:", b2.value)

CVXPY
v1.4.2

(CVXPY) Mar 20 09:52:49 AM: Your problem has 181 variables, 2 constraints, and O
parameters.

(CVXPY) Mar 20 09:52:49 AM: It is compliant with the following grammars: DCP,
DQCP

(CVXPY) Mar 20 09:52:49 AM: (If you need to solve this problem multiple times,
but with different data, consider using parameters.)

(CVXPY) Mar 20 09:52:49 AM: CVXPY will first compile your problem; then, it will
invoke a numerical solver to obtain a solution.

(CVXPY) Mar 20 09:52:49 AM: Your problem is compiled with the CPP
canonicalization backend.

(CVXPY) Mar 20 09:52:49 AM: Compiling problem (target solver=ECOS).
(CVXPY) Mar 20 09:52:49 AM: Reduction chain: Dcp2Cone -> CvxAttr2Constr ->
ConeMatrixStuffing -> ECOS

(CVXPY) Mar 20 09:52:49 AM: Applying reduction Dcp2Cone

(CVXPY) Mar 20 09:52:49 AM: Applying reduction CvxAttr2Constr

(CVXPY) Mar 20 09:52:49 AM: Applying reduction ConeMatrixStuffing

(CVXPY) Mar 20 09:52:49 AM: Applying reduction ECOS

(CVXPY) Mar 20 09:52:49 AM: Finished problem compilation (took 9.276e-03
seconds) .

(CVXPY) Mar 20 09:52:49 AM: Problem status: optimal

(CVXPY) Mar 20 09:52:49 AM: Optimal value: 8.944e+01

(CVXPY) Mar 20 09:52:49 AM: Compilation took 9.276e-03 seconds

(CVXPY) Mar 20 09:52:49 AM: Solver (including time spent in interface) took
3.277e-03 seconds

89.43653660717314

Optimal a: [0.20864823 -0.97870147 -1.62007281 -0.4604091 3.76855067]
Optimal b: [-9.24105061]

[4] :

gamma3 = 10

a3 = cp.Variable(n, 'a3')

b3 = cp.Variable(1l, 'b3")

eta3 = cp.Variable(m, 'eta3')

obj3 = cp.norm(a3) + gamma3 * (cp.norm(eta3,1))

cons3 = [Y0(X0a3-b3) + eta3 >= 1, eta3 >= 0]

problem3 = cp.Problem(cp.Minimize(obj3), cons3)

print (problem3.solve(verbose = True, solver = cp.EC0S))
print("\nOptimal a: ", a3.value, "\nOptimal b:", b3.value)

CVXPY
vi.4.2

(CVXPY) Mar 20 09:52:49 AM: Your problem has 181 variables, 2 constraints, and 0
parameters.

(CVXPY) Mar 20 09:52:49 AM: It is compliant with the following grammars: DCP,
DQCP

(CVXPY) Mar 20 09:52:49 AM: (If you need to solve this problem multiple times,
but with different data, consider using parameters.)

(CVXPY) Mar 20 09:52:49 AM: CVXPY will first compile your problem; then, it will
invoke a numerical solver to obtain a solution.

(CVXPY) Mar 20 09:52:49 AM: Your problem is compiled with the CPP
canonicalization backend.

(CVXPY) Mar 20 09:52:49 AM: Compiling problem (target solver=ECOS).
(CVXPY) Mar 20 09:52:49 AM: Reduction chain: Dcp2Cone -> CvxAttr2Constr ->
ConeMatrixStuffing -> ECOS

(CVXPY) Mar 20 09:52:49 AM: Applying reduction Dcp2Cone

(CVXPY) Mar 20 09:52:49 AM: Applying reduction CvxAttr2Constr

(CVXPY) Mar 20 09:52:49 AM: Applying reduction ConeMatrixStuffing

(CVXPY) Mar 20 09:52:49 AM: Applying reduction ECOS

(CVXPY) Mar 20 09:52:49 AM: Finished problem compilation (took 1.229e-02
seconds) .

(CVXPY) Mar 20 09:52:49 AM: Problem status: optimal

(CVXPY) Mar 20 09:52:49 AM: Optimal value: 8.524e+02

(CVXPY) Mar 20 09:52:49 AM: Compilation took 1.229e-02 seconds

(CVXPY) Mar 20 09:52:49 AM: Solver (including time spent in interface) took
3.183e-03 seconds

[5]:

[6]:

[71:

[7]1:

852.4305773711759

Optimal a: [0.15062914 -0.91314802 -1.52389243 -0.4642144 4.82133807]
Optimal b: [-8.80471718]

Predicting

First we load the test data. As above, we make a matrix Yiest.

Xtest = mat['features_test']
ytest = mat['labels_test']
mtest, ntest = Xtest.shape
Ytest = np.zeros((mtest,mtest),float)
for i in range(mtest):
Ytest[i] [i] = ytest[i] [0]

We only need to find which side of the hyperplane {z | 2" a = b} the test data points are - this is

obtained by checking whether y; = sgn(:roa —b), or equivalently, y; - (J:]-Ta —b) > 0. So again we

consider the vector Yiest (Xtesta — b1) and find out how many of them have non-positive entries - the
lower this number, the better is the prediction.

print (sum(Ytest@(Xtest@al.value-bl.value)<=0))
print (sum(Ytest@(Xtest@a2.value-b2.value)<=0))
print (sum(Ytest@(Xtest@a3.value-b3.value)<=0))

1

2

al.value

array([0.14105247, 0.18277618, -0.73224986, -0.10977297, 0.38083898])

